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4 Gewinnt Theory:

How to determine the shortest path to victory

In “4 Gewinnt”, up to seven moves are possible. Without loss of

generality, only three are considered here.
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1. computer move

human response

2. computer move

Lets assume

- none of the moves b,c,d leads to a direct win of the computer.

- none of the positions (ovals) in the box is a winning position for the human.

- for all the positions in the box we know the maximum number of moves it

  takes for the computer to win starting from that position.

Can we derive the maximum number of moves it takes to win from position A?
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4 Gewinnt Theory,

continued
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Lets assume for move c the outcome cannot be determined.

Lets assume the human tries to delay defeat. This means we need to take

the maximum from 3,2,4 to get the number of moves for B, and the

maximum of 2,2,3 for D.

Lets assume the computer plays to win as fast a possible, so it would take

the minimum of 4,3 and play move d.

The maximum number of moves it takes to win from position A is thus 3.
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4 Gewinnt Theory,

continued
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2. computer move

Other cases:

Move c is a direct win for the computer.

The maximum number of moves it takes to win from position A is thus 1.
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B D

4 Gewinnt Theory,

continued
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1. computer move
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Other cases:

Move b would allow the human to win. Use move d, which is a sure win.

The maximum number of moves it takes to win from position A is thus 3.

A

b
c d

B D
C

4 Gewinnt Theory,

continued



?

- ? ?

3 - 4 2 ? 3

1. computer move

human response

2. computer move

Other cases:

If the computer uses move b, the human can win. If the computer plays d,

there is one case where it cannot be determined who will win.

So the maximum number of moves it takes to win from position A is

unknown.
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b
c d

B D
C

4 Gewinnt Theory,

continued
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The previous discussion showed that if one can compute the shortest number of winning 

moves for every node in the box, then one can derive the shortest number of winning

moves for the top node A by taking the maximum of the minima.

As for every node in the box we are in the same situation as for node A (computer move), 

all we need is to do is drawing the whole tree (or only up to a certain depth) and apply the 

procedure again and again for bottom to top.

A4 Gewinnt Theory,

n � n+1



Known bugs

• resizing the window such that is less wide than required by
the longest line in gameLog makes the gameLog textArea
shrink to one line in height.
• The “check for interrupt” in Robot.computeMove() is of type
“busy wait”. This is not elegant and wastes compute time. Isn’t
there a better solution?
• computation could be made much faster: currently the tree is
computed once for a computer and once from a human
perspective. These two runs could be merged.


