
Programming Vier Gewinnt

Detlef Wolf

2006-12-13

Part 1: Event Loop Basics
 Control Flow
 Background Compute Thread

Part 2: How to determine the shortest path to victory
Part 3: Known bugs

Event Loop Thread

time

Event e1

added to

queue

Event e2

added to

queue

Pseudo-event

programmatically

added to queue

f1

f2

f3

Dispatcher calls
function(s)

listening for the
given type of event

t

Any events occurring
while a function f() is
executed will only be

processed after f()
terminates. For
responsive user

interfaces, t must be
small (< 0.5 seconds).

Idle

Typical Low Level Events:

- mouse moved

- mouse clicked

- window de-iconized

Typical Higher Level Events:

- button clicked

- enter key pressed

Executing function f1

The vertical line symbolizes the main execution thread

time

startMensch()

time

VierGewinntModel HumanMove

waitForMove()

function call

return

idle,
awaiting events,

e.g. human

pressing

column button

run

run

actionPerformed()

function call

humanMove()
update game
board, call
paintComponent,
call RobotMove()

return
idle

human

presses

Start button

human

presses

column button

state changes
and flow of
control

Each of the two vertical lines symbolizes one object instance

time

vierGewinnt

Model

gameLog

Communication between main and robot thread

Each of the lines symbolizes one object instance, color symbolizes threads

time

robot

robotThread /

new Thread

robotMove()

run

create, call

computeMove()

call

call

return

println()

append(),

paint()

start()

return

timeconsFunc()

timeconsFunc()return
idle,
awaiting events,

e.g. repaint

message area

finished()
move()

idle

idle

call

return

Part 1:
start,
message,
terminate

May take long
time, but main
thread stays
responsive.

vierGewinnt

Model

Communication between main and robot thread

Each of the lines symbolizes one object instance, color symbolizes threads

time

robot

time

robotThread /

new Thread

robotMove()

run

create, call

computeMove()

call

start()

timeconsFunc()return
idle

Part 2:
interrupt

set interrupt flag

interruptAndWait()

thread terminated

run

idle

start

Computer()

Human presses
Start Computer
Button

returnreturn

Time lag
until flag is
queried and
honored

computer move

human move

computer move

4 Gewinnt Theory:

How to determine the shortest path to victory

In “4 Gewinnt”, up to seven moves are possible. Without loss of

generality, only three are considered here.

3 2 4 2 ? -1

1. computer move

human response

2. computer move

Lets assume

- none of the moves b,c,d leads to a direct win of the computer.

- none of the positions (ovals) in the box is a winning position for the human.

- for all the positions in the box we know the maximum number of moves it

 takes for the computer to win starting from that position.

Can we derive the maximum number of moves it takes to win from position A?

A

b
c d

4 Gewinnt Theory,

continued

3

4 -1 3

3 2 4 2 2 3

1. computer move

human response

2. computer move

Lets assume for move c the outcome cannot be determined.

Lets assume the human tries to delay defeat. This means we need to take

the maximum from 3,2,4 to get the number of moves for B, and the

maximum of 2,2,3 for D.

Lets assume the computer plays to win as fast a possible, so it would take

the minimum of 4,3 and play move d.

The maximum number of moves it takes to win from position A is thus 3.

A

b
c d

B D

4 Gewinnt Theory,

continued

1

4 1 3

3 2 4 2 2 3

1. computer move

human response

2. computer move

Other cases:

Move c is a direct win for the computer.

The maximum number of moves it takes to win from position A is thus 1.

A

b
c d

B D

4 Gewinnt Theory,

continued

3

- ? 3

3 - 4 2 2 3

1. computer move

human response

2. computer move

Other cases:

Move b would allow the human to win. Use move d, which is a sure win.

The maximum number of moves it takes to win from position A is thus 3.

A

b
c d

B D
C

4 Gewinnt Theory,

continued

?

- ? ?

3 - 4 2 ? 3

1. computer move

human response

2. computer move

Other cases:

If the computer uses move b, the human can win. If the computer plays d,

there is one case where it cannot be determined who will win.

So the maximum number of moves it takes to win from position A is

unknown.

A

b
c d

B D
C

4 Gewinnt Theory,

continued

computer move

human move

computer move

The previous discussion showed that if one can compute the shortest number of winning

moves for every node in the box, then one can derive the shortest number of winning

moves for the top node A by taking the maximum of the minima.

As for every node in the box we are in the same situation as for node A (computer move),

all we need is to do is drawing the whole tree (or only up to a certain depth) and apply the

procedure again and again for bottom to top.

A4 Gewinnt Theory,

n � n+1

Known bugs

• resizing the window such that is less wide than required by
the longest line in gameLog makes the gameLog textArea
shrink to one line in height.
• The “check for interrupt” in Robot.computeMove() is of type
“busy wait”. This is not elegant and wastes compute time. Isn’t
there a better solution?
• computation could be made much faster: currently the tree is
computed once for a computer and once from a human
perspective. These two runs could be merged.

